Noise-induced unstable dimension variability and transition to chaos in random dynamical systems.

نویسندگان

  • Ying-Cheng Lai
  • Zonghua Liu
  • Lora Billings
  • Ira B Schwartz
چکیده

Results are reported concerning the transition to chaos in random dynamical systems. In particular, situations are considered where a periodic attractor coexists with a nonattracting chaotic saddle, which can be expected in any periodic window of a nonlinear dynamical system. Under noise, the asymptotic attractor of the system can become chaotic, as characterized by the appearance of a positive Lyapunov exponent. Generic features of the transition include the following: (1) the noisy chaotic attractor is necessarily nonhyperbolic as there are periodic orbits embedded in it with distinct numbers of unstable directions (unstable dimension variability), and this nonhyperbolicity develops as soon as the attractor becomes chaotic; (2) for systems described by differential equations, the unstable dimension variability destroys the neutral direction of the flow in the sense that there is no longer a zero Lyapunov exponent after the noisy attractor becomes chaotic; and (3) the largest Lyapunov exponent becomes positive from zero in a continuous manner, and its scaling with the variation of the noise amplitude is algebraic. Formulas for the scaling exponent are derived in all dimensions. Numerical support using both low- and high-dimensional systems is provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition to chaos in continuous-time random dynamical systems.

We consider situations where, in a continuous-time dynamical system, a nonchaotic attractor coexists with a nonattracting chaotic saddle, as in a periodic window. Under the influence of noise, chaos can arise. We investigate the fundamental dynamical mechanism responsible for the transition and obtain a general scaling law for the largest Lyapunov exponent. A striking finding is that the topolo...

متن کامل

CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM

We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...

متن کامل

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

Noise dynamically suppresses chaos in random neural networks

Noise is ubiquitous in neural systems due to intrinsic stochasticity or external drive. For deterministic dynamics, neural networks of randomly coupled units display a transition to chaos at a critical coupling strength. Here, we investigate the effect of additive white noise on the transition. We develop the dynamical mean-field theory yielding the statistics of the activity and the maximum Ly...

متن کامل

Finite Time Identification in Unstable Linear Systems

Identification of the parameters of stable linear dynamical systems is a well-studied problem in the literature, both in the low and high-dimensional settings. However, there are hardly any results for the unstable case, especially regarding finite time bounds. For this setting, classical results on least-squares estimation of the dynamics parameters are not applicable and therefore new concept...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 67 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003